Introductory Human Anatomy and Physiology 1 – KNES 200
Kinesiology Program/University Studies

Course Outline

COURSE IMPLEMENTATION DATE: Pre 1998
OUTLINE EFFECTIVE DATE: September 2015
COURSE OUTLINE REVIEW DATE: April 2020

GENERAL COURSE DESCRIPTION:

This course is an introduction to the structural and functional aspects of the human musculoskeletal, cardiovascular and respiratory systems.

Program Information: This course is required in the Kinesiology Diploma Program (Exercise Science stream and the Health and Human Performance stream) and may be used as an elective for students in other disciplines (prerequisite may be required).

Delivery: KNES 200 is presented in a lecture-lab format. The physiology portion of the course is primarily taught during the lecture portion while the anatomy and application portion of the course is dealt with during the laboratory periods.

COTR Credits: 3

Hours for this course: 90 hours

Typical Structure of Instructional Hours:

<table>
<thead>
<tr>
<th>Instructional Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Hours</td>
<td>45</td>
</tr>
<tr>
<td>Seminars / Tutorials</td>
<td></td>
</tr>
<tr>
<td>Laboratory / Studio Hours</td>
<td>45</td>
</tr>
<tr>
<td>Practicum / Field Experience Hours</td>
<td></td>
</tr>
<tr>
<td>Other Contact Hours</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
</tr>
</tbody>
</table>

Practicum Hours (if applicable):

<table>
<thead>
<tr>
<th>Type of Practicum</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-the-job Experience</td>
<td>N/A</td>
</tr>
<tr>
<td>Formal Work Experience</td>
<td>N/A</td>
</tr>
<tr>
<td>Other</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

© College of the Rockies
Course Outline Author or Contact:
Rob Tillman, B.Sc., B.Ed., M.S.S.E.

APPROVAL SIGNATURES:

Department Head
Norma Sherret
E-mail: nsherret@cotr.bc.ca

Dean of Instruction
Heather Hepworth
E-mail: hepworth@cotr.bc.ca

EDCO
Valid from: September 2015 – April 2020

COURSE PREREQUISITES AND TRANSFER CREDIT:

Prerequisites: Biology 12 or BIOL 090 or BIOL 101/102 or KNES 190
Corequisites: None
Flexible Assessment (FA):
Credit can be awarded for this course through FA ☑ Yes ☐ No

Learners may request formal recognition for flexible assessment at the College of the Rockies through one or more of the following processes: External Evaluation, Worksite Assessment, Demonstration, Standardized Test, Self-assessment, Interview, Products/Portfolio, Challenge Exam. Contact an Education Advisor for more information.

Transfer Credit: For transfer information within British Columbia, Alberta and other institutions, please visit http://www.cotr.bc.ca/Transfer.

Students should also contact an academic advisor at the institution where they want transfer credit.

Prior Course Number: HKIN 200 ⇔ KNES 200
Date changed: September 2012

Equivalent Course: Students who have received COTR credit for BIOL 181 may not receive additional credit for KNES 200.
Textbooks and Required Resources:

Textbook selection varies by instructor and may change from year to year. At the Course Outline Effective Date the following textbooks were in use:

KNES 200 Lab Manual – Available at the College Bookstore

Please see the instructor’s syllabus or check COTR’s online text calculator http://www.cotr.bc.ca/bookstore/cotr_web.asp?IDNumber=164 for a complete list of the currently required textbooks.

LEARNING OUTCOMES:

It is critical that physical education and kinesiology personnel have a sound background in human anatomy and physiology to enable them to deal with rapidly advancing technology in training methods and completion. Such knowledge will also allow them to critically evaluate contentious issues in sport which often arise from new technology. KNES 200 is designed to provide the student with a solid foundation in anatomy and physiology on which to build.

Upon the successful completion of this course, students should be able to

- understand and use anatomical and physiological terminology;
- demonstrate a basic understanding of specific components of the human body on a structural and functional level;
- identify the various components of the skeletal system and understand anatomical & physiological knowledge of bones, joints and joint structures;
- identify the main muscles of the human body, their origin, insertion and their action on the human body, and understand the cellular kinetics and mechanics of skeletal muscles;
- identify the various components of the circulatory system, and understand the cardiac conduction system and vascular anatomy & physiology; and
- identify the various components of the respiratory system and understand the mechanics and regulation of ventilation and gas exchange.

COURSE TOPICS:

1. ORGANIZATION OF THE BODY
 Levels of Structural Organization
 Maintaining Life
 - Homeostasis
 - The Language of Anatomy
 - Anatomical Position and Directional Terms
 - Regional Terms
 - Body Planes and Sections
 - Body Cavities and Membranes

 Structure and Function of Cells
Histology
- Basic Characteristics
- Definition
- Epithelial Tissue
- Connective Tissue
- Nervous Tissue
- Muscle Tissue
- Tissue Repair

Structure and Function of Skin

2. COVERING, SUPPORT & MOVEMENT OF THE BODY

A. Bones & Skeletal Tissues
 Functions of the Bones
 Classification of Bones
 Bone Structure
 - Gross Anatomy
 - Microscopic Structure of Bone
 - Bone Markings
 - Chemical Composition of Bone
 - Bone Development (Osteogenesis)
 - Endochondral Ossification
 - Intramembranous Ossification
 - Physiological Control of Bone Formation/Maintenance
 - Bone Homeostasis: Remodeling and Repair
 - Bone Remodelling
 - Repair of Fractures
 - Introduction to Bone Disorders

B. Joints
 Introduction to Articulations
 - Structural and Functional Classification of Joints
 Fibrous Joints
 Cartilaginous Joints
 Synovial Joints
 - General Structure and Characteristics
 - Types of Synovial Joints
 - Introduction to Synovial Joint Injuries

C. Muscles and Muscle Tissue
 Functions of Muscle Tissue
 Muscle Types
 Skeletal Muscle
 - Gross Anatomy of Skeletal Muscle Tissue
 - Microscopic Anatomy of a Skeletal Muscle Fiber
 - Contraction of a Skeletal Muscle Fiber
 - How Muscles Respond to Stimuli
 - The Molecular Basis of Muscle Contraction
 - Regulation of Contraction
 - Contractions of Skeletal Muscle
 - Motor Unit
 - Muscle Twitch/Tension
• Muscle Tonus
• Types of Skeletal Muscle Fibers
• Muscle Metabolism
• Energy Storage
• Muscle Fatigue
• Force, Velocity and Duration of Muscle Contraction
• Force of Contraction
• Muscle-joint Lever Actions
• Muscular Dystrophy, Atrophy and Hypertrophy
• Thermoregulation
• Hypothermia
• Hyperthermia
• Smooth Muscle
• Microscopic Structure
• Contraction
• Introduction to Muscle Disorders

3. THE CARDIOVASCULAR SYSTEM

A. The Heart
Size, Location and Orientation
• Coverings
• Heart wall
• Chambers & Associated Vessels
• Pathway of Blood
• Coronary Circulation
• Heart Valves
Properties of Cardiac Muscle
• Microscopic Anatomy
• Mechanism and Events of Contraction
• Energy Requirements
• Cardiac Physiology
• Electrical Events and the Cardiac Cycle
• Electrocardiography
• Heart Sounds
• Cardiac Output
• Regulation of Stroke Volume
• Preload: Degree of Stretch
• Afterload: Back Pressure
• Regulation of Heart Rate
• Introduction to Cardiac Disorders

B. Blood Vessels
Blood Vessel Structure and Function
Physiology of Circulation
• Introduction to Blood Flow, Blood Pressure and Resistance
• Systemic Blood Pressure
• Factor Influencing Blood Pressure
• Regulation of Blood Pressure
Circulatory Pathways: Blood Vessels of the Body
Fetal Circulation
Introduction to Vascular Disorders
C. Blood
Composition and Functions of Blood
Cellular Phase
• Erythrocytes
• General Structural and Functional Characteristics
• Production of Erythrocytes
• Regulation of Erythropoiesis
• Fate and Destruction of Erythrocytes
• Leukocytes
• General Structural and Functional Characteristics
• Types
• Platelets
• Liquid Phase
• Components of Blood Plasma
Hemostasis
Introduction to Blood Disorders

D. The Lymphatic System
Structure and Function

4. THE RESPIRATORY SYSTEM
Functional Anatomy of the Respiratory System
Mechanics of Breathing
• Respiratory Muscles
• The Respiratory Reflex
• Control of Respiration
• Respirometry
• Respiratory Volumes and Capacities
• Pulmonary Function Tests
• Alveolar Ventilation Role
• Gas Exchange in the Body
• Basic Properties of Gases
• Composition of Alveolar Gas
• Gas Exchange Between the Blood, Lungs and Tissues
• Transport of Respiratory Gases
• Introduction to Respiratory Disorders

LAB PROGRAM
Lab 1: Histology: The Study of Tissues
Lab 2: Anatomical Positions, Planes and the Axial Skeleton
Lab 3: The Appendicular Skeleton
Lab 4: Articulations
Lab 5: The Cardiovascular System
Lab 6: Anatomical and Physiological Aspects of Respiration
Lab 7: Muscles I – Muscles of the Torso, Neck and Head
Lab 8: Muscles II – Muscles and Associated Structures of the Arm
Lab 9: Muscles III – Muscles and Associated Structures of the Leg

See instructor's syllabus for the detailed outline of weekly readings, activities and assignments.
ESSENTIAL SKILLS DEVELOPED IN THIS COURSE:
Students can expect to develop the following skills in this course:

Skills for Busy Students
- Manage study time effectively
- Recognize personal learning style
- Use effective note-taking strategies
- Practice strategies to succeed at exams and tests

Research Skills
- Database searching and evaluating the information/sources with internet information

EVALUATION AND ASSESSMENT:

<table>
<thead>
<tr>
<th>Assignments</th>
<th>% Of Total Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>15%</td>
</tr>
<tr>
<td>Lab Exam 1</td>
<td>15%</td>
</tr>
<tr>
<td>Lab Exam 2 (cumulative)</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam (cumulative)</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Please see the instructor’s syllabus for specific classroom policies related to this course, such as details of evaluation, penalties for late assignments, and use of electronic aids.

EXAM POLICY:

Students must attend all required scheduled exams that make up a final grade at the appointed time and place.

Individual instructors may accommodate for illness or personal crisis. Additional accommodation will not be made unless a written request is sent to and approved by the appropriate Department Head prior to the scheduled exam.

Any student who misses a scheduled exam without approval will be given a grade of “0” for the exam.

COURSE GRADE:

Course grades are assigned as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B+</th>
<th>B</th>
<th>B-</th>
<th>C+</th>
<th>C</th>
<th>C-</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>≥ 90</td>
<td>89-85</td>
<td>84-80</td>
<td>79-76</td>
<td>75-72</td>
<td>71-68</td>
<td>67-64</td>
<td>63-60</td>
<td>59-55</td>
<td>54-50</td>
<td>< 50</td>
</tr>
</tbody>
</table>

A grade of "D" grants credit, but may not be sufficient as a prerequisite for sequential courses.
ACADEMIC POLICIES:

See www.cotr.bc.ca/policies for general college policies related to course activities, including grade appeals, cheating and plagiarism.

COURSE CHANGES:

Information contained in course outlines is correct at the time of publication. Content of the courses is revised on an ongoing basis to ensure relevance to changing educational, employment and marketing needs. The instructor endeavours to provide notice of changes to students as soon as possible. The instructor reserves the right to add or delete material from courses.